Triple Product L-functions and Quantum Chaos on Sl(2,c)
نویسنده
چکیده
Let Y be an arithmetic hyperbolic 3-manifold. We establish a link between quantum unique ergodicity for sections of automorphic vector bundles on Y and subconvexity for the triple product L-function, which extends a result of Watson in the case of hyperbolic 2-manifolds. The proof combines the representation theoretic microlocal lift for bundles developed by Bunke and Olbrich with the triple product formula of Ichino. A key step is determining the asymptotic behaviour of the local integrals at complex places that appear in Ichino’s formula.
منابع مشابه
Rankin Triple Products and Quantum Chaos
In this dissertation we demonstrate the chaotic nature of some archetypical quantum dynamical systems, using machinery from analytic number theory. We consider the quantized geodesic flow on finite-volume hyperbolic surfaces Γ\H, with Γ ⊂ SL 2 R consisting of the norm-1 units of an Eichler order in an indefinite quaternion algebra B over Q. Such Γ generalize the congruence subgroups of SL 2 Z a...
متن کامل8 Rankin Triple Products and Quantum Chaos
In this dissertation we demonstrate the chaotic nature of certain special arithmetic quantum dynamical systems, using machinery from analytic number theory. We consider the quantized geodesic flow on finite-volume hyperbolic surfaces Γ\H, with Γ ⊂ SL 2 R consisting of the norm-1 units of an Eichler order in an indefinite quaternion algebra B over Q. Such Γ generalize the congruence subgroups of...
متن کاملTriple Products and Quantum Chaos
In this paper we demonstrate the chaotic nature of certain special arithmetic quantum dynamical systems, using machinery from analytic number theory. Consider the quantized geodesic flow on a finite-volume hyperbolic surface Γ\H, with Γ ⊂ SL 2 R consisting of the norm-1 units of an Eichler order in an indefinite quaternion algebra B over Q. Such Γ generalize the congruence subgroups of SL 2 Z a...
متن کاملModularity of the Rankin-selberg L-series, and Multiplicity One for Sl(2)
Relevant objects and the strategy 9 3.2. Weak to strong lifting, and the cuspidality criterion 13 3.3. Triple product L-functions: local factors and holomorphy 15 3.4. Boundedness in vertical strips 18 3.5. Modularity in the good case 30 3.6. A descent criterion 32 3.7. Modularity in the general case 35 4. Applications 37 4.1. A multiplicity one theorem for SL(2) 37 4.2. Some new functional equ...
متن کاملModularity of the Rankin
In memory of my father Sundaram Ramakrishnan (SRK) Contents 1. Introduction 2. Notation and preliminaries 3. Construction of ⊠ : A(GL(2)) × A(GL(2)) → A(GL(4)) 3.1. Relevant objects and the strategy 3.2. Weak to strong lifting, and the cuspidality criterion 3.3. Triple product L-functions: local factors and holomorphy 3.4. Boundedness in vertical strips 3.5. Modularity in the good case 3.6. A d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014